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a b s t r a c t

Gradient coil design typically involves optimisation of current densities or coil windings on familiar
cylindrical, planar, spherical or conical surfaces. In this paper, an analytic inverse method is presented
for the theoretical design of toroidal transverse gradient coils. This novel geometry is based on previous
work involving a 3D current density solution, in which the precise geometry of the gradient coils was
obtained as part of the optimisation process. Regularisation is used to solve for the toroidal current den-
sities, whereby the field error is minimised in conjunction with the total power of the coil. The method is
applied to the design of unshielded and shielded, whole-body and head coil gradient systems. Prelimin-
ary coil windings displaying high gradient homogeneity, low inductance, high efficiency and good force
balancing are displayed and discussed. Potential benefits associated with this morphology include self-
shielding gradient sets, greater access to cooling mechanisms, a reduction in acoustic noise due to
force-balancing, a lessening of patient claustrophobia and greater patient access for clinicians.

Crown Copyright � 2009 Published by Elsevier Inc. All rights reserved.
1. Introduction centrated current, which results in increased efficiency and lower
Magnetic resonance imaging (MRI) scanners contain gradient
coils as a means of frequency-encoding the imaging volume. This
is achieved by a set of three coils, which superimpose a linear mag-
netic field in each orthogonal direction, and are pulsed rapidly at
specific times during image acquisition. Coil performance is gov-
erned by efficiency g, gradient homogeneity d and inductance L
[1]. Various combinations of these parameters are used as figures
of merit [1–3].

Numerous coil-space optimisation techniques are available for
the design of gradient coils, including conjugate gradient descent
[4], simulated annealing [5] or the genetic algorithm (see for exam-
ple, [6, p. 86]). An alternative branch of design methods deals with
reciprocal space by expanding quantities of interest in terms of
orthogonal functions and solving for the coefficients of a current
density expansion [3]. A well-established example is Turner’s tar-
get field method, in which a Fourier–Bessel expansion is used to
describe the induced magnetic field and a current density solution
is obtained using Fourier Transforms [7]. Typically this is achieved
by minimising some feature of the coil such as inductance [8],
stored magnetic energy [9] or power [10], subject to the constraint
that the field be specified at a set of target points, following a La-
grange multiplier argument. The current density solution must
then be approximated in some manner using discrete windings.
This approach generally leads to more compact coils with less con-
009 Published by Elsevier Inc. All r
inductance [1].
A possible drawback of the target field method is that it as-

sumes coils of notionally infinite length as a result of the use of
Fourier Transforms. A Fourier series representation of the current
density is proposed by Carlson et al. [2] to obtain a finite length
coil, and coil length is constrained explicitly using a Turner-style
target field method by Chronik and Rutt [3]. Forbes and Crozier
[11] use a Fourier series expansion combined with Tikhonov regu-
larisation (see for example, [12, p. 307]) to solve an ill-conditioned
integral equation and obtain a finite length coil without
approximation.

In addition to the standard primary design aim of arriving at an
optimal trade-off between gradient homogeneity, coil efficiency
and inductance (see also, [13]), many secondary concerns dictate
design considerations for gradient coils. These include: the sup-
pression of eddy currents via shielding (see for example, [14–
16]); avoiding peripheral nerve stimulation (see for example,
[17–19]); alleviating patient claustrophobia (see for example,
[20]); and minimising acoustic noise caused by Lorentz forces
(see for example, [21–24]).

In an attempt to address specific gradient problems further
and improve coil performance, more recent gradient designs
have tended to deviate away from the established primary plus
shield coil, cylindrical or biplanar gradient system and a variety
of geometries have been considered (see for example [25–33]).
However, despite these methods being applicable and adaptable
to arbitrary geometry, this geometry must still be chosen prior
to the method being implemented. In contrast, a design method
for whole-body transverse gradient coils is presented by While
ights reserved.
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Fig. 1. The kth elliptical torus with radius ak , semi-major axis bk1, semi-minor axis
bk2 and centred on the point ðx; y; zÞ ¼ ð0; 0; ckÞ. The top portion displays a cross-
section in the ðy; zÞ plane at x ¼ 0 and shows the variable /0 and corresponding unit
vector e/. The bottom portion displays a cross-section in the ðx; yÞ plane at z ¼ ck

and shows the variable h0 and corresponding unit vector eh .
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et al. [34] that allows full freedom to explore arbitrary current
distribution within 3D solution space. That is, the coil windings
are not constrained to lie on some predetermined surface, but
are instead found as part of the optimisation process. This meth-
od of gradient coil design can potentially offer a number of
advantages. For example, integrated shielding may be possible,
rather than having to consider separate surfaces for primary
and shield coil windings. In addition, the resultant structures ob-
tained may feature natural advantages in regards to cooling,
force balancing and patient claustrophobia.

In While et al. [34], a 3D current density solution, contained
within the volume between two coaxial cylinders of different radii,
is obtained by minimising gradient field error in conjunction with
total coil power using Tikhonov regularisation. Discrete 3D coil
windings are obtained using a priority streamline technique and
a secondary field optimisation for the coil currents, and these are
found to display an interesting general geometric form involving
sets of closed loops plus spiral-type coils. However, despite induc-
ing an attractive magnetic field within the region of interest, coil
efficiency is low due to the small number of windings and increas-
ing this number results in an unattractive design in terms of
manufacturability.

The aim of the present paper is to take the 3D gradient coil
results of While et al. [34] and address the concerns of coil effi-
ciency and manufacturability whilst maintaining the field accu-
racy and general geometry of the coil. The sets of closed loops
plus spiral-type coils obtained in While et al. [34] are found to
lie approximately on the surfaces of sets of elliptical tori. There-
fore, using these 3D coil windings as a guide, we replace the 3D
current density of While et al. [34] with a set of toroidal cur-
rent density surfaces and repeat the gradient field optimisation.
Provided field accuracy is maintained, this should yield gradient
coil windings that are easy to manufacture via machine etching,
and should also offer much greater freedom in regards to opti-
mising the trade-off between coil efficiency, inductance and
field error.

It is envisaged that further to this preliminary work, other gra-
dient coil concerns, as mentioned previously, may be addressed
using this 3D design method and similarly novel geometry. This
method has the additional advantage of being semi-analytical in
nature and avoids the computational constraints associated with
the numerical techniques that dominate recent coil design.

The geometrical description of the toroidal surfaces will be pre-
sented in the following section. In Section 3, general forms for the
components of this current density vector will be selected using
Fourier series. A regularisation solution process will be outlined
in Section 4, and the method for obtaining discrete coil windings
from the continuous current density will be explained in Section
5, along with the means for calculating certain parameters measur-
ing coil performance. Results will be displayed and compared in
Section 6 for a variety of gradient coil designs, and some conclud-
ing remarks will be given in Section 7.

2. Elliptical tori and governing equations

Let us consider K elliptical tori of radius ak ðk ¼ 1 : KÞ, with
semi-major axes bk1 and semi-minor axes bk2, lying coaxially with
the z-axis and centred on the points ðx; y; zÞ ¼ ð0; 0; ckÞ. Fig. 1 illus-
trates this arrangement for the kth torus with cross-sections both
in the ðy; zÞ and ðx; yÞ planes. Every point on the surface of the
torus can be described using a position vector in terms of two coor-
dinates, h0 and /0 (shown in Fig. 1), and this is given by:

r0kðh
0;/0Þ ¼ ðak þ bk2 cos /0Þ cos h0ex þ ðak þ bk2 cos /0Þ sin h0ey

þ ðck þ bk1 sin /0Þez; ð1Þ
where the unit vectors ex; ey and ez point along the usual Cartesian
x, y and z axes, respectively (see Fig. 1). We may also define the unit
vectors:

eh ¼ � sin h0ex þ cos h0ey ð2Þ

e/ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
k1 cos2 /0 þ b2

k2 sin2 /0
q

� ð�bk2 sin /0 cos h0ex � bk2 sin /0 sin h0ey þ bk1 cos /0ezÞ; ð3Þ

and the scale functions:

hkh ¼ ak þ bk2 cos /0 ð4Þ

hk/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

k1 cos2 /0 þ b2
k2 sin2 /0

q
; ð5Þ

for this orthogonal curvilinear coordinate system. Suppose some
current density vector jkðr0kÞ exists on the surface of the kth torus,
at a source point with position vector r0k. Using Eqs. (2)-(5), this
may be expressed in component form as follows:

jkðr0kÞ ¼ jkhðr0kÞeh þ jk/ðr0kÞe/

¼ � jkhðr0kÞ sin h0 þ jk/ðr0kÞ
bk2

hk/
sin /0 cos h0

� �
ex

þ jkhðr0kÞ cos h0 � jk/ðr0kÞ
bk2

hk/
sin /0 sin h0

� �
ey

þ jk/ðr0kÞ
bk1

hk/
cos /0ez: ð6Þ

The magnetic induction vector BðrÞ at the field point r, induced by a
surface current density vector jðr0Þ existing at the source point r0 on
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the surface S0, can be obtained from the Biot-Savart law and is given
by:

BðrÞ ¼ l0

4p

ZZ
S0

ðr0 � rÞ � jðr0Þ
kr0 � rk3 dA0; ð7Þ

where l0 is the magnetic permeability of free-space. For the design
of gradient coils, primary interest lies with the axial component of
the magnetic induction vector, which for the present elliptical torus
system can be expressed as follows:

Bzðx; y; zÞ ¼ l0

4p
XK

k¼1

Z 2p

0

Z 2p

0

1
R3

k

jkh hkh � x cos h0 � y sin h0ð Þhk/

�

þjk/bk2 sin /0ðx sin h0 � y cos h0Þ
�

hkhdh0d/0; ð8Þ

where

Rk ¼ f½hkh cos h0 � x�2 þ ½hkh sin h0 � y�2 þ ½ðck þ bk1 sin /0Þ � z�2g1=2
:

ð9Þ

The aim is to solve for the current density components jkh and jk/

ðk ¼ 1 : KÞ such that the z-component of the induced magnetic field
closely matches that of some desired target magnetic field over the
surface of the DSV. This makes Eq. (8) a Fredholm integral equation
of the first kind (see for example, [12, p. 299]) and is therefore likely
to be ill-conditioned. However, a regularisation strategy will be dis-
cussed shortly to overcome this problem.

3. Toroidal current density and field expressions

The surface current density vector on each torus must have zero
divergence, that is: r � jk ¼ 0. Given the expression for jkðr0kÞ in Eq.
(6), the position vector r0k for points on the kth torus given by Eq.
(1), and the scale functions given by Eqs. (4) and (5), we have
(see for example, [35, p. A64]):

r � jk ¼
1

hkhhk/

@

@h0
jkhhk/

� �
þ @

@/0
ðjk/hkhÞ

	 

: ð10Þ

Eq. (10) can therefore be made zero by introducing a streamfunc-
tion wkðh0; /0Þ related to the components of the current density by
means of the equations:

jkhhk/ ¼
@wk

@/0
and jk/hkh ¼ �

@wk

@h0
: ð11Þ

This means that we need only obtain the solution to one component
of the current density. The streamfunction serves to be of further
benefit as it can be shown that contours of wkðh0; /0Þ occur at equal
intervals of current and hence give appropriate locations for coil
windings (see for example, [36]).

Fourier series in terms of torus coordinates h0 and /0 are used to
describe the components of the current density vector and the
streamfunction:

wkðh0; /0Þ ¼
XM

m¼1

XN

n¼1

fcos n/0½Amnk cos mh0 þ Bmnk sin mh0�

þ sin n/0½Cmnk cos mh0 þ Dmnk sin mh0�g ð12Þ

jkhðh0;/0Þ ¼
�1
hk/

XM

m¼1

XN

n¼1

nfsin n/0 Amnk cos mh0 þ Bmnk sin mh0½ �

� cos n/0½Cmnk cos mh0 þ Dmnk sin mh0�g ð13Þ

jk/ðh0; /0Þ ¼
1

hkh

XM

m¼1

XN

n¼1

mfcos n/0½Amnk sin mh0 � Bmnk cos mh0�

þ sin n/0½Cmnk sin mh0 þ Dmnk cos mh0�g: ð14Þ

Eqs. (12)-(14) involve four set of coefficients, Amnk, Bmnk, Cmnk and
Dmnkðm ¼ 1 : M; n ¼ 1 : N; k ¼ 1 : KÞ, which are to be solved for
later. Substituting Eqs. (13) and (14) into Eq. (8) and performing a
change of variables ðb ¼ h0 � hÞ, we express the axial component
of the magnetic induction vector at any ðr; h; zÞ field point as
follows:

Bzðr; h; zÞ ¼ l0

XK

k¼1

XM

m¼1

XN

n¼1

fUmnkðr; zÞ½Amnk cos mhþ Bmnk sin mh�

þ Vmnkðr; zÞ½Cmnk cos mhþ Dmnk sin mh�g; ð15Þ

where for convenience we have introduced the intermediate
functions:

Umnkðr; zÞ ¼ � 1
2p

Z 2p

0

Z p

0

1
R3

k

½ðhkh � r cos bÞhkhn sin n/0 cos mb

� bk2rm sin /0 sin b cos n/0 sin mb�dbd/0 ð16Þ

Vmnkðr; zÞ ¼ 1
2p

Z 2p

0

Z p

0

1
R3

k

½ðhkh � r cos bÞhkhn cos n/0 cos mb

þ bk2rm sin /0 sin b sin n/0 sin mb�dbd/0; ð17Þ

and

Rk ¼ h2
kh � 2hkhr cos bþ r2 þ ðck þ bk1 sin /0Þ � z½ �2

n o1=2
: ð18Þ

That is, Eq. (15) gives the magnetic induction vector as a linear func-
tion of the unknown current density coefficients.

4. Regularisation solution process

The axial component of the magnetic induction vector (15) is
required to match some desired target field on the surface of a
spherical region of interest (DSV) with radius a and centred at
the point ðx; y; zÞ ¼ ð0; 0; zaÞ. Therefore, the following field error
UDSV is minimised with respect to the unknown coil coefficients:

UDSV ¼ a
Z aþza

�aþza

Z p

�p
f½Bzðra; h; zÞ � BTz�2gdhdz; ð19Þ

where ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðz� zaÞ2

q
and BTz is the z-component of the target

field. For example, for the coefficient Auvw we have the condition:

@UDSV

@Auvw
¼ 2pal2

0

XK

k¼1

XN

n¼1

Aunk

Z aþza

�aþza

Uunkðra; zÞUuvwðra; zÞdz
�

þCunk

Z aþza

�aþza

Vunkðra; zÞUuvwðra; zÞdz
�

�2al0

Z aþza

�aþza

Z p

�p
BTzðra; h; zÞUuvwðra; zÞ cos uhdhdz ¼ 0;

ð20Þ

and similar conditions exist for the remaining three sets of
coefficients.

Active shielding may be incorporated by minimising, in con-
junction with UDSV (19), the total magnetic flux US on the surface
of some exterior cylindrical target region of length 2L and radius
c, centred about the origin:

US ¼ c
Z L

�L

Z p

�p
B2

z ðc; h; zÞdhdz: ð21Þ

For example, the shielding condition for coefficient Auvw is as
follows:

@US

@Auvw
¼ 2pcl2

0

XK

k¼1

XN

n¼1

Aunk

Z L

�L
Uunkðc; zÞUuvwðc; zÞdz

�

þCunk

Z L

�L
Vunkðc; zÞUuvwðc; zÞdz

�
: ð22Þ
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Therefore, to account for shielding, this condition (22) would be
added to Eq. (20), along with similar expressions for the remaining
sets of current density coefficients, and made equal to zero.

The integrals in Eqs. (20) and (22) may be evaluated numeri-
cally to obtain a system of linear equations in terms of the un-
known current density Fourier coefficients, and the complete
system can be expressed in matrix equation form:

ðAþ kSASÞX ¼ T: ð23Þ

Here matrix A (square) and vector T contain the field error condi-
tions such as Eq. (20), matrix AS (square) contains the shielding con-
ditions such as Eq. (22), and the unknown coefficients are stored in
vector X (length 4MNK). A weighting kS has been applied to matrix
AS such that the shielding constraint may be scaled. As is typical of
these kinds of problems, however, matrices A and AS are found to be
highly ill-conditioned and this can lead to gross errors in the corre-
sponding solution.

A regularisation strategy is used to overcome this problem (see
for example, [12, p. 307]), in which UDSV (19) and US (21) are re-
placed by a residual error C, by adding a weighting kP of some addi-
tional constraint P, before minimisation with respect to the
coefficients:

C ¼ UDSV þ kSUS þ kPP: ð24Þ

The regularising parameter kP behaves in a similar way to a La-
grange multiplier except that its value is left open for numerical
experimentation. The choice of penalty function P is largely up to
the designer and in the present paper, as in While et al. [34], we
choose P to represent minimum power:

P ¼
XK

k¼1

Z p

�p

Z p

�p
j2
kh þ j2

k/

h i
hkhhk/dh0d/0: ð25Þ

Minimising the residual error C (24) demands the differentiation of
P (25) with respect to the current density coefficients. For example,
for the coefficient Auvw we get:

@P
@Auvw

¼ 2p
XN

n¼1

Aunw nv
Z p

�p

hwh

hw/
sin n/0 sin v/0d/0

	�

þu2
Z p

�p

hw/

hwh
cos n/0 cos v/0d/0




�Cunw nv
Z p

�p

hwh

hw/
cos n/0 sin v/0d/0

	

�u2
Z p

�p

hw/

hwh
sin n/0 cos v/0d/0


�
; ð26Þ

and similar expressions are obtained for the remaining three sets of
coefficients. The full system of linear equations is expressed in ma-
trix equation form:

ðAþ kSAS þ kPPÞX ¼ T; ð27Þ

where matrix P contains the minimum power conditions such as Eq.
(26). Increasing kP improves the conditioning of the matrix equation
(27); however, this also reduces the accuracy with which the in-
duced field can be matched to the target field, for which kP must
be small [11]. Solving Eq. (27) yields the current density coefficients
stored in vector X. These can be used in conjunction with Eqs. (12)-
(14) for the surface current density and Eq. (8) or (15) for the axial
component of the magnetic induction vector.

5. Coil winding discretisation

Coil properties such as gradient homogeneity, efficiency and
inductance can only be calculated sensibly with respect to physical
coil windings and hence a discretisation of the current density is re-
quired. Coil windings are obtained by contouring wk (12). This can
be achieved using the program MATLABTM, for example, provided
care is taken in choosing appropriate contour levels and in pre-
serving current flow direction when storing contour vertices.

For a discretised system of K tori, each containing Wk ðk ¼ 1 : KÞ
coil windings described by the Qwk vertices ðx0kwq; y0kwq; z0kwqÞ
ðq ¼ 1 : Qwk), and carrying currents Ik, the magnetic induction vec-
tor (7) becomes:

BðrÞ ¼ l0

4p
XK

k¼1

Ik

XWk

w¼1

XQwk

q¼1

ðr0kwq � rÞ � Ds0kwq

R3
kwq

; ð28Þ

where

Rkwq ¼ ½ðx0kwq � xÞ2 þ ðy0kwq � yÞ2 þ ðz0kwq � zÞ2�1=2: ð29Þ

Here vector r0kwq describes the position vector for each coil winding
vertex and vector r represents all field points of interest. Vector
Ds0kwq represents a discretised segment of the coil winding:

Ds0kwq ¼ Dx0kwqex þ Dy0kwqey þ Dz0kwqez; ð30Þ

where, for example: Dx0kwq ¼ x0kw;qþ1 � x0kwq. The axial component of
the magnetic induction vector is therefore given by:

Bzðx; y; zÞ¼
l0

4p
XK

k¼1

Ik

XWk

w¼1

XQwk

q¼1

1
R3

kwq

½ðx0kwq�xÞDy0kwq�ðy0kwq�yÞDx0kwq�:

ð31Þ

The greater the number of coil windings, the more accurately the
field induced by the discretised system, given by Eq. (31), will
match that of the continuous system given by Eq. (8) or (15).

Coil efficiency is calculated by taking the ratio of the gradient
strength to coil current magnitude:

g ¼ G
maxðIkÞ

ð8k ¼ 1 : KÞ: ð32Þ

Efficiency can be improved by increasing the number of coil wind-
ings. However, this can also increase coil inductance, which is
undesirable.

Coil inductance for a volumetric current density J(r) may be cal-
culated as follows (see for example, [6, p. 58]):

L ¼ l0

4pI2

ZZZ
V

ZZZ
V

JðrÞ � Jðr0Þ
kr� r0k dv 0dv ; ð33Þ

where V denotes the volume of the conductor. For the discrete sys-
tem this becomes:

L¼ l0

4p
XK

k¼1

XK

h¼1

XWk

w¼1

XWh

v¼1

XQwk

q¼1

XQvh

p¼1

1
Rkhwvqp

½ðxhv ;pþ1�xhvpÞðxkw;qþ1�xkwqÞ

þðyhv;pþ1�yhvpÞðykw;qþ1�ykwqÞþðzhv;pþ1�zhvpÞðzkw;qþ1�zkwqÞ�;
ð34Þ

where

Rkhwvqp ¼ ½ðxhvp � xkwqÞ2 þ ðyhvp � ykwqÞ
2 þ ðzhvp � zkwqÞ2�1=2

: ð35Þ

Note that care must be taken to avoid any numerical errors caused
by small or vanishing denominators.

Gradient homogeneity d provides a means of quantitatively
measuring the accuracy with which the induced field matches
the target field and can be calculated as follows [1]:

d ¼ 1
V

ZZZ
V

BzðrÞ � BTz

BTz

	 
2

dV

¼ 3
4pa3

Z aþza

�aþza

Z 2p

0

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ðz�zaÞ2
p

0

Bzðr; h; zÞ � BTz

BTz

	 
2

rdrdhdz; ð36Þ



Fig. 2. The 24 coil windings used to approximate the 3D current density Jðr0; h0; z0Þ
obtained for an unshielded x-gradient coil in While et al. [34].
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Fig. 3. The coil windings of Fig. 2 mapped to the ðr; zÞ plane. The dashed lines
represent cross-sections in this plane of the best-fit ellipses for the (a) first, (b)
second, and (c) third torus.

Table 1
Parameter values (m) for the six tori of the whole-body gradient coil.

Torus 1 Torus 2 Torus 3 Torus 4 Torus 5 Torus 6

ak 0.3098 0.3260 0.3188 0.3188 0.3260 0.3098
ck 0.4828 0.2691 0.0762 �0.0762 �0.2691 �0.4828
bk2 0.0217 0.0275 0.0211 0.0211 0.0275 0.0217
bk1 0.0707 0.0792 0.0522 0.0522 0.0792 0.0707
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where the volume of integration is the DSV. The value
ffiffiffi
d
p

effectively
gives a measure of total field error

ffiffiffi
d
p
� 100%


 �
over the volume of

the DSV.
We may also estimate the Lorentz forces placed on the coil

windings and the associated torque of the system. Lorentz forces
arise as a result of the strong gradient currents being immersed
in the powerful magnetic field induced by the main magnet. The
switching of the gradient coils in this field subsequently estab-
lishes a pressure wave, which manifests as acoustic noise (see for
example, [21]). The Lorentz force DF acting on a wire segment
Ds0 (30) carrying current I within a magnetic field B is given by:

DF ¼ IDs0 � B: ð37Þ

If we assume that the magnetic field has a dominant z-component,
B0z, the x- and y-components of the total force on the system are gi-
ven by:

Fx ¼ B0z

XK

k¼1

Ik

XWk

w¼1

XQwk

q¼1

ðy0kw;qþ1 � y0kwqÞ ð38Þ

Fy ¼ �B0z

XK

k¼1

Ik

XWk

w¼1

XQwk

q¼1

ðx0kw;qþ1 � x0kwqÞ: ð39Þ

Eqs. (38) and (39) may be modified to consider the forces on indi-
vidual tori or specific regions of the coil system.

The associated torque Ds on the winding segment Ds0 in Eq. (37)
is given by:

Ds ¼ r0 � DF; ð40Þ

where r0 is the position vector of the winding segment relative to
some appropriate reference point. It is important that the torque
be as small as possible to minimise coil deformation and ensure
structural integrity (see for example, [25,13,26]). For the present
toroidal gradient coil system, the components of the total torque
vector are given by:

sx ¼ B0z

XK

k¼1

Ik

XWk

w¼1

XQwk

q¼1

ðx0kw;qþ1 � x0kwqÞðz0kwq � z0Þ ð41Þ

sy ¼ B0z

XK

k¼1

Ik

XWk

w¼1

XQwk

q¼1

ðy0kw;qþ1 � y0kwqÞðz0kwq � z0Þ ð42Þ

sz ¼ �B0z

XK

k¼1

Ik

XWk

w¼1

XQwk

q¼1

½ðx0kw;qþ1 � x0kwqÞðx0kwq � x0Þ

þ ðy0kw;qþ1 � y0kwqÞðy0kwq � y0Þ�; ð43Þ

where ðx0; y0; z0Þ is taken to be some reference point such as the
origin or the centre of mass of the system.

6. Results and discussion

The results of While et al. [34] were used to guide the choice of
geometrical parameters (see Fig. 1) and the number of tori consid-
ered. In that paper, the greatest success was achieved for an un-
shielded whole-body system comprising six sets of closed loops
and spiral-type coil windings. This result is reshown here in
Fig. 2. Therefore, we consider K ¼ 6 tori and obtain parameters
ðak; bk1; bk2; ckÞ for each torus by mapping the vertices of the wind-
ings in Fig. 2 to the ðr; zÞ plane and finding the best-fit elliptical
cross-sections following a least squares type argument. Results
for the first three tori are illustrated in Fig. 3 and parameter values
for all six tori are summarised in Table 1.

A symmetrically located DSV was selected, as in While et al.
[34], centred at the origin and with radius a ¼ 0:15 m. The target
field was chosen to represent an x-gradient with gradient strength
50 mT/m, such that BTz ¼ 50� 10�3ra cos h in Eq. (19), with
ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðz� zaÞ2

q
. The outer cylindrical shielding target region

was chosen to have length 2L ¼ 1:2 m, radius c ¼ 0:6 m and to be
centred about the origin. The program MATLABTM was used for
numerical integration, for solving the matrix equations, and for
plotting coil and field properties of interest. Numerical integration
was performed over 20 intervals and the series representations for
the current density components, given by Eqs. (13) and (14), were
taken to M ¼ N ¼ 11 terms.

Results were obtained firstly for an unshielded transverse
whole-body gradient system. That is, matrix AS in Eq. (27) was ig-
nored in solving for vector X. The condition number of matrix A
alone was found to be very high and of the order 1039. Using a reg-
ularising parameter of kP ¼ 10�18, the condition number was de-
creased to the order 104, which allowed accurate solutions to be
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Fig. 4. (a) The 128 coil windings used to approximate the toroidal current densities
jkðh0; /0 Þ ðk ¼ 1 : KÞ for the six tori of the transverse whole-body case with
kP ¼ 10�18. (b) The coil windings of the first torus in (a), plotted on the ðh; /Þ
plane, where the dashed lines represent reverse current in those portions of the coil.
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obtained. In conjunction with the aim of obtaining a well condi-
tioned matrix system (27), the field error

ffiffiffi
d
p

(from Eq. (36)) asso-
ciated with the continuous current density guided the choice of
regularising parameter as it represented a limit to the field error
attainable for the discretised system of coil windings. For the con-
tinuous current density result with kP ¼ 10�18 we findffiffiffi

d
p
¼ 0:0156. That is, the field error over the volume of the DSV

is approximately 1.56%.
When discretising the current density, by taking contours of the

streamfunction wk (12), a sufficiently large mesh of size 501� 501
was considered to ensure convergence of all properties of interest.
These contours were taken such that each winding on the same
torus carried identical current, and windings on different tori car-
ried as close to identical current as possible, limited only by the
integer number of coil windings. The maximum current amongst
the windings of all the tori was used in efficiency calculations, as
dictated by Eq. (32). In practice, the small differences in coil cur-
rent between tori may be achieved by the addition of a parallel
resistor to each torus, however this is not ideal due to possible
thermal instability. Alternatively, a preferred method is to adjust
the streamfunction through the introduction of delta functions,
as explained by Carlson et al. [2], to obtain an even current step.

As a first example, Fig. 4a displays a set of 128 coil windings ob-
tained for the six tori of the unshielded transverse whole-body case
with kP ¼ 10�18. Current is concentrated in the second and fifth
torus; however this depends largely on the value of kP . Fig. 4b
shows the winding pattern for the first torus plotted on the ðh; /Þ
plane (see Fig. 1) and displays a familiar fingerprint type pattern.
On first look, the windings shown in Fig. 4a do not appear to
resemble the spiral-type windings obtained in the 3D gradient
work of While et al. [34], shown in Fig. 2. However, certain features
are similar in a general sense. For example, in the portion of the
coils in Fig. 2 where the spirals are tightly wound there is strong
axial current, which is also observed in the same portion of the
coils in Fig. 4a. Similarly, in the portion of the coils in Fig. 2 where
the spirals open up (near the plane y ¼ 0) there is strong azimuthal
current, which is also observed in the same portion of the coils in
Fig. 4a.

The axial component of the magnetic induction vector (31), cor-
responding to the coil windings in Fig. 4, is shown in Fig. 5 as a con-
tour plot on the ðr; zÞ plane at constant h ¼ 0. The curved dashed
line indicates the boundary of the DSV in this plane and an excel-
lent match to the target field is observed within this region. This is
confirmed by calculating the field error using Eq. (36), for which
we find

ffiffiffi
d
p
¼ 0:0178 (1.78%). Note that this value is only slightly

larger than that found above for the continuous current density
solution (

ffiffiffi
d
p
¼ 0:0156). Alternatively, this corresponds to a 5% field

error DSV of radius 0.202 m.
The maximum coil current is found to be 743 A, which for a gra-

dient strength of 50 mT/m relates to a coil efficiency (32) of
g ¼ 67:4 lT=A=m. The inductance (34) for the present whole-body
example is found to be L ¼ 634 lH. Chronik and Rutt [3] introduce
a figure of merit for measuring coil perfomance that is independent
of the number of coil windings and coil radius a, given by ga2:5=

ffiffiffi
L
p

.
For this first example we obtain the value ga2:5=

ffiffiffi
L
p
¼

1:53� 10�4ðTm=AÞ1=2. In addition, we find that the field maximum
on the exterior target region is 2.6 mT.

Coil efficiency can be improved by increasing the number of
windings. However, this could present manufacturing difficulties
and would also increase coil inductance One alternative may be
to increase kP , which will reduce the power in the coil at the ex-
pense of gradient homogeneity and should lead to an improvement
in efficiency for the same number of coil windings.

For example, for kP ¼ 10�17 a slightly improved efficiency of
g ¼ 71:4 lT=A=m was obtained for a reduced number of 108 coil
windings. This reduction in coil windings, in conjunction with their
smoother nature as kP is increased, also led to a reduced inductance
of L ¼ 454 lH and the value ga2:5=

ffiffiffi
L
p
¼ 1:91� 10�4ðTm=AÞ1=2. This

improvement in coil performance was at the expense of gradient
homogeneity, for which

ffiffiffi
d
p
¼ 0:0382 (compared to

ffiffiffi
d
p
¼ 0:0373

for the continuous current density). This represents a 3.82% field
error, or expressed alternatively, a 5% field error DSV of radius
0.169 m. Figures for this kP ¼ 10�17 case have not been shown in
interests of space but are similar in general form to Figs. 4 and 5.
The reduction in coil power also results in a reduced field maxi-
mum on the exterior target region of 2.3 mT. As a further whole-
body example, if we increase the number of coil windings for the
kP ¼ 10�17 case from 108 to 140, we get a solution with
g ¼ 90:1 lT=A=m and L ¼ 756 lH, for the same ga2:5=

ffiffiffi
L
p

and
ffiffiffi
d
p

values.
Shielding can be incorporated by reintroducing the function US

(21) into the residual error C (24), before minimising with respect
to the current density coefficients. That is, conditions such as Eq.
(22) are used to create matrix AS in Eq. (27) before solving for
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structure and the dashed line represents the boundary of the DSV in this plane.
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the coefficient vector X. For example, solving Eq. (27) with kS ¼ 1
and kP ¼ 10�18 and discretising the current density with 204 coil
windings, gives a shielded gradient system displaying an efficiency
g ¼ 49:7 lT=A=m, an inductance L ¼ 473 lH ga2:5=

ffiffiffi
L
p
¼ 1:30�



10�4ðTm=AÞ1=2Þ and a field error

ffiffiffi
d
p
¼ 0:0488 (4.88%). This repre-

sents approximately a 70% reduction in coil performance, which
is typical for shielded gradients. The field maximum on the exterior
target region is found to be 0.12 mT and represents a 95% improve-
ment when compared to the unshielded design. Figures have not
been shown in interests of brevity, however this example demon-
strates that it is possible to incorporate active self-shielding suc-
cessfully into the present gradient coil design methodology.

The Lorentz forces acting on the gradient coils can be calculated
using Eqs. (38) and (39) and for the whole-body examples consid-
ered above are found to be of the order 10�11—10�15 N. This is de-
spite the sum of the magnitudes of the forces being of the order
104—105 N. However, it is important to modify Eqs. (38) and (39)
to calculate the net force over the two halves of the system,
x > 0 and x < 0 (see for example, Fig. 4a), for each torus, thus iso-
lating individual sets of coil windings. These net forces are all
found to be very small and of the order 10�11—10�14 N. Therefore,
these preliminary results suggest that considerable force cancel-
ling is achieved with these toroidal whole-body gradient coil
designs.

The associated torque may be calculated using Eqs. (41)-(43).
For all the above whole-body examples, the x- and y-components
of the torque, sx and sy, were found to be negligible and of the or-
der 10�10—10�14 Nm. This is very small when compared to other
gradient coil designs (see for example, [25]), particularly consider-
ing that torque has not been minimised directly as part of the opti-
misation process. The z-component of the torque, sz, is much larger
with magnitude approximately equal to 150 Nm for the above un-
shielded examples (twice this for the shielded example), which re-
lates to an azimuthal twisting of the coil about the z-axis. This
corresponds to a torque per unit current per unit field strength of
around 0.2–0.3 Nm/A/T, which is appropriate for systems without
direct torque balancing (see for example, [13]).

The figure of merit ga2:5=
ffiffiffi
L
p

was calculated for a wide variety of
contemporary unshielded and shielded whole-body transverse
gradient coil designs, such that the preliminary results presented
thus far could be compared in terms of coil performance. A consid-
erable spread of values were obtained and typically fell in the
range ga2:5=

ffiffiffi
L
p
¼ 0:85—2:2� 10�4ðTm=AÞ1=2 for recent whole-body

designs [3,25,30,18,19]. Recall that the toroidal unshielded coil has
ga2:5=
ffiffiffi
L
p
¼ 1:91� 10�4ðTm=AÞ1=2 and the shielded coil

ga2:5=
ffiffiffi
L
p
¼ 1:30� 10�4ðTm=AÞ1=2, which are therefore both com-

petitive with modern designs. However, it is important to stress
that many other design criteria must be considered in any direct
comparison betwen coils. For instance, the toroidal designs pre-
sented here display a large linear field region and considerable
force cancelling characteristics. In addition, the unique geometry
and novel design method show promise for optimising additional
design criteria in subsequent work.

Other dedicated coil types can be considered in a straightfor-
ward manner using the present design methodology, simply by
altering the geometric parameters defining each torus. For exam-
ple, a dome-like head coil structure was considered such that
windings could be placed as close to the head, and hence the
DSV, as possible (see for example, [25,31,32]). The parameters for
the whole-body case, given in Table 1, were used as a guide in
maintaining semi-major to semi-minor axis ratios for the ellipses.
However to fit the structure of the coil best, these ratios were
skewed by a function of torus position around the dome. In addi-
tion, to obtain better coverage of the coil volume, gap sizes be-
tween adjacent tori were reduced for this head coil example. This
approach was investigated for reasons of immediacy and conve-
nience, rather than resolving for a 3D current density as in While
et al. [34]. The chosen structure for the head coil is illustrated in
Fig. 6 and the geometric parameter values for all six tori are sum-
marised in Table 2.

A smaller DSV of radius a ¼ 0:075 m was chosen, centred at the
point ðx; y; zÞ ¼ ð0; 0; zaÞ, with za ¼ 0:15 m (dashed line in Fig. 6).
The target field was chosen to represent an x-gradient with gradi-
ent strength 50 mT/m; however, shielding was not considered for
this coil design. Choosing kP ¼ 10�22 reduced the condition number
of the matrix equation (27) from the order of 1032 to 109, such that
accurate solutions could be obtained. The corresponding continu-
ous current density solution induced a field with error



Table 2
Parameter values (m) for the six tori of the head gradient coil.

Torus 1 Torus 2 Torus 3 Torus 4 Torus 5 Torus 6

ak 0.0319 0.0899 0.1317 0.1496 0.1500 0.1500
ck 0.2966 0.2701 0.2219 0.1607 0.0964 0.0321
bk2 0.0276 0.0198 0.0129 0.0102 0.0101 0.0101
bk1 0.0106 0.0148 0.0228 0.0288 0.0290 0.0290
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Fig. 8. Contour plot of the Bzðr; h; zÞ field on the ðr; zÞ plane h ¼ 0, induced by the
136 coil windings of the head coil illustrated in Fig. 7. The curved dashed line
represents the boundary of the DSV in this plane.
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ffiffiffi
d
p
¼ 0:0022 (0.22%), which served as a limit for any discretised

system of coil windings.
Fig. 7 displays a discretised set of 136 windings over the six tori

of the present head coil example with kP ¼ 10�22. Note that the
current is much more evenly spread amongst tori when compared
to the whole-body coil of Fig. 4a. The maximum coil current has a
value of 273 A, such that the efficiency is g ¼ 183:4 lT=A=m, which
is high. The inductance is calculated to be L ¼ 115 lH, such that
ga2:5=

ffiffiffi
L
p
¼ 1:49� 10�4ðTm=AÞ1=2. Fig. 8 displays a contour plot of

the axial component of the induced field on the ðr; zÞ plane, with
h ¼ 0. A highly linear field is induced within the DSV and the field
error is found to be

ffiffiffi
d
p
¼ 0:0329 (3.29%, or a 5% field error DSV of

radius 0.102 m). Note, for comparison, that the field maximum on
an exterior cylindrical target region of radius c ¼ 0:25 m and
length L ¼ 0:35 m is found to be 0.84 mT for this head coil exam-
ple. Reducing the number of coil windings to 92 (instead of 136)
results in an induced field with much the same field error but at
a lower efficiency of g ¼ 123 lT=A=m and with a lower inductance
of L ¼ 53 lH (same ga2:5=

ffiffiffi
L
p

).
As illustrated above with the whole-body system, the coil effi-

ciency to inductance trade-off can be improved potentially by
increasing the value of the regularising parameter kP . This reduces
the power of the coil system and also smoothens the current den-
sity and hence the coil windings, and therefore can be beneficial to
both efficiency and inductance. For example, Fig. 9 displays a dis-
cretised set of only 52 windings over the six tori of a head coil de-
sign with kP ¼ 5� 10�19. Despite the low number of coil windings,
this coil was found to have an efficiency g ¼ 114:4 lT=A=m and an
inductance L ¼ 28 lH, such that ga2:5=

ffiffiffi
L
p
¼ 1:90� 10�4ðTm=AÞ1=2,

and a field error
ffiffiffi
d
p
¼ 0:0253 (2.53%). That is, the efficiency–induc-
Fig. 7. The 136 coil windings used to approximate the toroidal current densities
jkðh0; /0Þ ðk ¼ 1 : KÞ for the six tori of the transverse head coil case with kP ¼ 10�22.
tance trade-off is superior to the kP ¼ 10�22 example of Fig. 7 and
the field error is actually smaller (although the 5% field error DSV
has a smaller radius of 0.095 m). This demonstrates the nonlinear
behaviour of kP when solving Eq. (27). A field plot has not been
shown in interests of space but is similar to Fig. 8. Increasing the
number of coil windings to 76 increases efficiency but also induc-
tance, to g ¼ 160:2 lT=A=m and L ¼ 58 lH, respectively,
ga2:5=

ffiffiffi
L
p
¼ 1:83� 10�4ðTm=AÞ1=2


 �
, for approximately the same

field error. For both of these examples, the field maximum on the
exterior target region is found to be 1.1 mT.

The sum of the Lorentz forces on the coil windings in each half,
x > 0 and x < 0 (see for example, Fig. 9), of each torus of the above
head coil examples is found to be negligible (order 10�12—10�15 N),
as was similarly found for the whole-body cases. This is despite the
large individual magnitudes of the forces and again suggests that
considerable force cancelling is achieved with these toroidal gradi-
ent coil designs. In contrast to the whole-body designs, however,
the head coil designs have a dominant y-component of the torque
vector. For the kP ¼ 10�22 cases, sy � �110 Nm, sz � �11 Nm and
sx is negligible, such that the torque per unit current per unit field
strength is about 0.3–0.4 Nm/A/T. For the kP ¼ 5� 10�19 cases,
these quantities are smaller by a factor of about 4.

Presently it is unclear what dependence the results obtained
thus far have on the precise geometry of the elliptical torus sur-
faces. To investigate this dependence, the elliptical tori of the head
coil displayed in Fig. 6 were replaced with circular tori of equal
cross-sectional area, and the model resolved for a number of com-
parable cases. That is, the parameters in Table 2 were used once
more, except that all bk1 and bk2 values were replaced with
bk ¼ 0:0171 m. As a direct comparison to the elliptical torus head
coil displayed in Fig. 9, Eq. (27) was resolved for the circular torus
head coil described above, with kP ¼ 5� 10�19, and the current
density solution was discretised into 54 coil windings (as close to
52 as possible). This design was found to have an efficiency
g ¼ 85 lT=A=m and an inductance L ¼ 25 lH, such that
ga2:5=

ffiffiffi
L
p
¼ 1:48� 10�4ðTm=AÞ1=2, and a field error

ffiffiffi
d
p
¼ 0:0253

(2.53%, or a 5% field error DSV of radius 0.097 m). This is an inferior
coil design to the elliptical torus head coil of Fig. 9, for which
ga2:5=

ffiffiffi
L
p
¼ 1:90� 10�4 ðTm=AÞ1=2, and provisionally suggests that

the precise elliptic form of the torus cross-sections may be impor-
tant in optimising results.

However, as a final example, discretising the circular torus head
coil with 74 windings was found to increase the efficiency to
g ¼ 152:8 lT=A=m but increase the inductance only to L ¼ 45 lH,



Fig. 9. The 52 coil windings used to approximate the toroidal current densities
jkðh0; /0Þðk ¼ 1 : KÞ for the six tori of the transverse head coil case with
kP ¼ 5� 10�19.
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such that ga2:5=
ffiffiffi
L
p
¼ 1:99� 10�4ðTm=AÞ1=2, for a field error offfiffiffi

d
p
¼ 0:0231 (2.31%, or a 5% field error DSV of radius 0.098 m). That

is, the efficiency–inductance trade-off for this circular torus design
is apparently superior to that of the equivalent elliptical torus de-
sign described above (for which ga2:5=

ffiffiffi
L
p
¼ 1:83� 10�4ðTm=AÞ1=2).

In addition, the field maximum on the exterior target region is
found to be only 0.4 mT, which represents a 64% improvement over
the elliptical torus head coil of Fig. 9, and the torque per unit cur-
rent per unit field strength is slightly smaller. Note however, that
in all these head coil examples we have not included active shield-
ing, nor torque minimisation.

This final result still suggests that the precise torus geometry is
important, but perhaps that the approximate values of Table 2 and
the chosen elliptic form of Fig. 6 are not entirely optimal. A more
indepth analysis would require the application of the 3D design
method of While et al. [34] to a head gradient coil, however further
fine-tuning of the torus geometry is beyond the scope of the pres-
ent paper and will be left for future research. Note that the added
advantage of using circular tori to construct the head coil is with
regards to ease of manufacture, and this consideration may well
outweigh any perceived benefits from fine-tuning the geometry
further.

As a means of judging coil performance for the presented preli-
minary head coil designs, the figure of merit ga2:5=

ffiffiffi
L
p

was calcu-
lated for a number of recently published transverse head
gradients (and similar). A wide spread of values were obtained,

with ga2:5=
ffiffiffi
L
p
¼ 0:78—2:74� 10�4ðTm=AÞ1=2 [25,31,32,18,26,22],

which demonstrates the competitive quality of the toroidal head

coils ga2:5=
ffiffiffi
L
p
¼ 1:99� 10�4ðTm=AÞ1=2


 �
. In addition, a superior le-

vel of gradient homogeneity is observed when compared to several
of these contemporary designs and the coils have also been shown
to display excellent force balancing.

7. Conclusion

An inverse method has been presented for the theoretical de-
sign of transverse gradient coils. The basic geometry of the gradi-
ent coil was chosen based on the results of While et al. [34].
Those authors considered a fully 3D current density and a priority
streamline method to obtain coil windings that optimised the in-
duced field subject to a minimum power constraint. Results from
While et al. [34] involved sets of closed loops plus spiral-type coil
windings and dictated the use of toroidal current density surfaces
as the preferred geometry in the present paper.

A regularisation strategy was used to solve for the toroidal sur-
face current densities. That is, the field error between the induced
and linear target fields within the DSV was minimised along with a
constraint representing the total power in the coil. The current
density was then discretised, via a streamfunction method, to ob-
tain individual coil windings on each torus.

Several unshielded and shielded, whole-body and head coil
examples were considered. These highlighted the trade-off be-
tween gradient homogeneity, coil inductance and efficiency. In
addition, it was demonstrated how varying the regularising param-
eter could improve coil performance. Coil windings displaying high
efficiency, low inductance, high gradient homogeneity and good
force balancing were obtained both for a cylindrical whole-body
design and a dome-like head coil design. In addition, the elliptical
torus structure was shown to display an inherent self-shielding
property and hence a compact overall form.

Further optimisation of the precise geometry of the tori may
yield even more attractive results. However, this must be balanced
against the ease of manufacture of the gradient coil, such as that
afforded by a circular torus design, for which excellent results
are nevertheless still attainable.

In addition to the self-shielding property, the general structure of
the system may potentially offer further advantages. For example,
the gaps between (or spaces inside) the tori allow greater access
for cooling mechanisms to improve thermal performance. These
gaps may also allay patient claustrophobia concerns and afford im-
proved patient access by allowing more open systems. Furthermore,
the separately contained elements comprising the coil system have
been shown in preliminary results to aid force balancing, which
should serve to reduce acoustic noise generated by the coil.

The combined design method of While et al. [34] and the pres-
ent paper allows considerable freedom in the optimisation of a
wide range of design criteria. The utility of the third radial dimen-
sion can potentially lead to additional novel and interesting coil
geometries to the toroidal structures presented in this paper. The
method has the added advantage of being semi-analytical and
hence fully tractable and computationally non-intensive. In light
of the preliminary results presented here, further work will look
at more direct treatment of gradient issues such as acoustic noise,
peripheral nerve stimulation and thermal performance, using the
present 3D design method.
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